Boy's surface/Proofs

From Wikipedia, the free encyclopedia

This mathematics article is devoted entirely to providing mathematical proofs and support for claims and statements made in the article Boy's surface. This article is currently an experimental vehicle to see how well we can provide proofs and details for a math article without cluttering up the main article itself. See Wikipedia:WikiProject Mathematics/Proofs for some current discussion. This article is "experimental" in the sense that it is a test of one way we may be able to incorporate more detailed proofs in Wikipedia.

Contents

[edit] Property of R. Bryant's parametrization

If z is replaced by the negative reciprocal of its complex conjugate, - {1 \over z^\star}, then the functions g1, g2, and g3 of z are left unchanged.

[edit] Proof

Let g1 be obtained from g1 by substituting z with - {1 \over z^\star}. Then we obtain

g_1' = -{3 \over 2} \mathrm{Im} \left( {- {1 \over z^\star} \left( 1 - {1 \over z^{\star 4} } \right) \over {1 \over z^{\star 6}} - \sqrt{5} {1 \over z^{\star 3}} - 1} \right).

Multiply both numerator and denominator by z^{\star 6},

g_1' = -{3 \over 2} \mathrm{Im} \left( {-z^\star (z^{\star 4} - 1) \over 1 - \sqrt{5} z^{\star 3} - z^{\star 6} } \right).

Multiply both numerator and denominator by -1,

g_1' = -{3 \over 2} \mathrm{Im} \left( {z^\star (z^{\star 4} - 1) \over z^{\star 6} + \sqrt{5} z^{\star 3} - 1} \right).

It is generally true for any complex number z and any integral power n that

(z^\star)^n = (z^n)^\star,

therefore

g_1' = -{3 \over 2} \mathrm{Im} \left( { z^\star (z^4 - 1)^\star \over (z^6 + \sqrt{5} z^3 - 1)^\star } \right),
g_1' = -{3 \over 2} \mathrm{Im} \left( - \left( {z (1 - z^4) \over z^6 + \sqrt{5} z^3 - 1} \right)^\star \right)

therefore g1' = g1 since, for any complex number z,

\mathrm{Im} (-z^\star) = \mathrm(z).

Let g2 be obtained from g2 by substituting z with - {1 \over z^\star}. Then we obtain

g_2' = -{3 \over 2} \mathrm{Re} \left( { - {1 \over z^\star} \left( 1 + {1 \over z^{\star 4}} \right) \over {1 \over z^{\star 6}} - \sqrt{5} {1 \over z^{\star 3}} - 1 } \right),
= -{3 \over 2} \mathrm{Re} \left( { z^\star (z^{\star 4} + 1) \over z^{\star 6} + \sqrt{5} z^{\star 3} - 1 } \right),
= -{3 \over 2} \mathrm{Re} \left( { z^\star (z^{4 \star} + 1) \over z^{6 \star} + \sqrt{5} z^{3 \star} - 1 } \right),
= -{3 \over 2} \mathrm{Re} \left( { z^\star (z^4 + 1)^\star \over (z^6 + \sqrt{5} z^3 - 1)^\star } \right),
= -{3 \over 2} \mathrm{Re} \left( \left( { z (z^4 + 1) \over z^6 + \sqrt{5} z^3 - 1} \right)^\star \right),

therefore g2' = g2 since, for any complex number z,

\mathrm{Re} (z^\star) = \mathrm{Re} (z).

Let g3 be obtained from g3 by substituting z with - {1 \over z^\star}. Then we obtain

g_3' = \mathrm{Im} \left( { 1 + {1 \over z^{\star 6}} \over {1 \over z^{\star 6}} - \sqrt{5} {1 \over z^{\star 3}} - 1} \right),
= \mathrm{Im} \left( { z^{\star 6} + 1 \over 1 - \sqrt{5} z^{\star 3} - z^{\star 6}} \right),
= \mathrm{Im} \left( { z^{6 \star} + 1 \over 1 - \sqrt{5} z^{3 \star} - z^{6 \star}} \right),
= \mathrm{Im} \left( - { (z^6 + 1)^\star \over (z^6 + \sqrt{5} z^3 - 1)^\star} \right),
= \mathrm{Im} \left( - \left( { z^6 + 1 \over z^6 + \sqrt{5} z^3 - 1} \right)^\star \right),

therefore g3' = g3. Q.E.D.

[edit] Symmetry of the Boy's surface

Boy's surface has 3-fold symmetry. This means that it has an axis of discrete rotational symmetry: any 120° turn about this axis will leave the surface looking exactly the same. The Boy's surface can be cut into three mutually congruent pieces.

[edit] Proof

Two complex-algebraic identities will be used in this proof: let U and V be complex numbers, then

\mathrm{Re}(U V) = \mathrm{Re}(U) \mathrm{Re}(V) - \mathrm{Im}(U) \mathrm{Im}(V), \,\!
\mathrm{Im}(U V) = \mathrm{Re}(U) \mathrm{Im}(V) + \mathrm{Im}(U) \mathrm{Re}(V). \,\!

Given a point P(z) on the Boy's surface with complex parameter z inside the unit disk in the complex plane, we will show that rotating the parameter z 120° about the origin of the complex plane is equivalent to rotating the Boy's surface 120° about the Z-axis (still using R. Bryant's parametric equations given above).

Let

z' = z e^{i 2 \pi / 3} \,\!

be the rotation of parameter z. Then the "raw" (unscaled) coordinates g1, g2, and g3 will be converted, respectively, to g′1, g′2, and g′3.

Substitute z′ for z in g3(z), resulting in

g_3'(z') = \mathrm{Im} \left( {1 + z'^6 \over z'^6 + \sqrt{5} z'^3 - 1} \right) - {1 \over 2},
g_3'(z) = \mathrm{Im} \left( {1 + z^6 e^{i 4 \pi} \over z^6 e^{i 4 \pi} + \sqrt{5} z^{i 2 \pi} - 1} \right) - {1 \over 2}.

Since ei = ei = 1, it follows that

g_3' = \mathrm{Im}\left( {1 + z^6 \over z^6 + \sqrt{5} z^3 - 1} \right) - {1 \over 2}

therefore g3' = g3. This means that the axis of rotational symmetry will be parallel to the Z-axis.

Plug in z′ for z in g1(z), resulting in

g_1'(z) = -{3 \over 2} \mathrm{Im} \left( { z e^{i 2 \pi / 3} (1 - z^4 e^{i 8 \pi / 3}) \over z^6 e^{i 4 \pi} + \sqrt{5} z^3 e^{i 2 \pi} - 1} \right).

Noticing that ei8π / 3 = ei2π / 3,

g_1' = -{3 \over 2} \mathrm{Im} \left( {z e^{i 2 \pi / 3} (1 - z^4 e^{i 2 \pi / 3}) \over z^6 + \sqrt{5} z^3 - 1} \right).

Then, letting ei4π / 3 = e i2π / 3 in the denominator yields

g_1' = -{3 \over 2} \mathrm{Im} \left( { z (e^{i 2 \pi / 3} - z^4 e^{-i 2 \pi / 3}) \over z^6 + \sqrt{5} z^3 - 1} \right).

Now, applying the complex-algebraic identity, and letting

z'' = {z \over z^6 + \sqrt{5} z^3 - 1}

we get

g_1' = -{3 \over 2} \left[ \mathrm{Im}(z'') \mathrm{Re}(e^{i 2 \pi / 3} - z^4 e^{-i 2 \pi / 3}) + \mathrm{Re}(z'') \mathrm{Im}(e^{i 2 \pi / 3} - z^4 e^{-i 2 \pi / 3}) \right].

Both Re and Im are distributive with respect to addition, and

\mathrm{Re}(e^{i \theta}) = \cos \theta, \,\!
\mathrm{Im}(e^{i \theta}) = \sin \theta, \,\!

due to Euler's formula, so that

g_1' = -{3 \over 2} \left[ \mathrm{Im}(z'') \left( \cos {2 \pi \over 3} - \mathrm{Re}(z^4 e^{-i 2 \pi / 3}) \right) + \mathrm{Re}(z'') \left( \sin {2 \pi \over 3} - \mathrm{Im}(z^4 e^{-i 2 \pi / 3}) \right) \right].

Applying the complex-algebraic identities again, and simplifying \cos {2 \pi \over 3} to -1/2 and \sin {2 \pi \over 3} to \sqrt{3} / 2, produces

g_1' = -{3 \over 2} \left[ \mathrm{Im}(z'') \left( -{1 \over 2} - [ \mathrm{Re}(z^4) \mathrm{Re}(e^{-i 2 \pi / 3}) - \mathrm{Im}(z^4) \mathrm{Im}(e^{-i 2 \pi / 3}) ] \right) + \mathrm{Re}(z'') \left( {\sqrt{3} \over 2} - [ \mathrm{Im}(z^4) \mathrm{Re}(e^{-i 2 \pi / 3}) + \mathrm{Re}(z^4) \mathrm{Im} (e^{-i 2 \pi / 3})] \right) \right].

Simplify constants,

g_1' = -{3 \over 2} \left[ \mathrm{Im}(z'') \left( -{1 \over 2} - \left[ -{1 \over 2} \mathrm{Re}(z^4) + {\sqrt{3} \over 2} \mathrm{Im}(z^4) \right] \right) + \mathrm{Re}(z'') \left( {\sqrt{3} \over 2} - \left[ -{1 \over 2} \mathrm{Im}(z^4) - {\sqrt{3} \over 2} \mathrm{Re}(z^4) \right] \right) \right],

therefore

g_1' = -{3 \over 2} \left[ -{1 \over 2} \mathrm{Im}(z'') + {1 \over 2} \mathrm{Im}(z'') \mathrm{Re}(z^4) - {\sqrt{3} \over 2} \mathrm{Im}(z'') \mathrm{Im}(z^4) + {\sqrt{3} \over 2} \mathrm{Re}(z'') + {1 \over 2} \mathrm{Re}(z'') \mathrm{Im}(z^4) + {\sqrt{3} \over 2} \mathrm{Re}(z'') \mathrm{Re}(z^4) \right].

Applying the complex-algebraic identity to the original g1 yields

g_1 = -{3 \over 2} [ \mathrm{Im}(z'') \mathrm{Re}(1 - z^4) + \mathrm{Re}(z'') \mathrm{Im}(1 - z^4) ],
g_1 = -{3 \over 2} [ \mathrm{Im}(z'') (1 - \mathrm{Re}(z^4)) + \mathrm{Re}(z'') (-\mathrm{Im}(z^4))],
g_1 = -{3 \over 2} [ \mathrm{Im}(z'') - \mathrm{Im}(z'') \mathrm{Re}(z^4) - \mathrm{Re}(z'') \mathrm{Im}(z^4) ].

Plug in z′ for z in g2(z), resulting in

g_2' = -{3 \over 2} \mathrm{Re} \left( {z e^{i 2 \pi / 3} (1 + z^4 e^{i 8 \pi / 3}) \over z^6 e^{i 4 \pi} + \sqrt{5} z^3 e^{i 2 \pi} - 1} \right) .

Simplify the exponents,

g_2' = -{3 \over 2} \mathrm{Re} \left( {z e^{i 2 \pi / 3} (1 + z^4 e^{i 2 \pi / 3}) \over z^6 + \sqrt{5} z^3 - 1} \right),
= -{3 \over 2} \mathrm{Re} ( z'' (e^{i 2 \pi / 3} + z^4 e^{-i 2 \pi / 3})).

Now apply the complex-algebraic identity to g′2, obtaining

g_2' = -{3 \over 2} \left[ \mathrm{Re}(z'') \mathrm{Re}(e^{i 2 \pi / 3} + z^4 e^{-i 2 \pi / 3}) - \mathrm{Im}(z'') \mathrm{Im}(e^{i 2 \pi / 3} + z^4 e^{-i 2 \pi / 3}) \right].

Distribute the Re with respect to addition, and simplify constants,

g_2' = -{3 \over 2} \left[ \mathrm{Re}(z'') \left(-{1 \over 2} + \mathrm{Re}(z^4 e^{-i 2 \pi / 3}) \right) - \mathrm{Im}(z'') \left({\sqrt{3} \over 2} + \mathrm{Im}(z^4 e^{-i 2 \pi / 3}) \right) \right].

Apply the complex-algebraic identities again,

g_2' = -{3 \over 2} \left[ \mathrm{Re}(z'') \left(-{1 \over 2} + \mathrm{Re}(z^4) \mathrm{Re}(e^{-i 2 \pi / 3}) - \mathrm{Im}(z^4) \mathrm{Im}(e^{-i 2 \pi \over 3}) \right) - \mathrm{Im}(z'') \left({\sqrt{3} \over 2} + \mathrm{Im}(z^4) \mathrm{Re}(e^{-i 2 \pi / 3}) + \mathrm{Re}(z^4) \mathrm{Im}(e^{-i 2 \pi / 3}) \right) \right].

Simplify constants,

g_2' = -{3 \over 2} \left[ \mathrm{Re}(z'') \left( -{1 \over 2} - {1 \over 2} \mathrm{Re}(z^4) + {\sqrt{3} \over 2} \mathrm{Im}(z^4) \right) - \mathrm{Im}(z'') \left({\sqrt{3} \over 2} - {\sqrt{3} \over 2} \mathrm{Re}(z^4) - {1 \over 2} \mathrm{Im}(z^4) \right) \right],

then distribute with respect to addition,

g_2' = -{3 \over 2} \left[ -{1 \over 2} \mathrm{Re}(z'') - {1 \over 2}\mathrm{Re}(z'') \mathrm{Re}(z^4) + {\sqrt{3}\over 2} \mathrm{Re}(z'') \mathrm{Im}(z^4) - {\sqrt{3}\over 2} \mathrm{Im}(z'') + {\sqrt{3}\over 2} \mathrm{Im}(z'') \mathrm{Re}(z^4) + {1 \over 2} \mathrm{Im}(z'') \mathrm{Im}(z^4) \right].

Applying the complex-algebraic identity to the original g2 yields

g_2 = -{3 \over 2} \left( \mathrm{Re}(z'') \mathrm{Re}(1 + z^4) - \mathrm{Im}(z'') \mathrm{Im}(1 + z^4) \right),
g_2 = -{3 \over 2} \left[ \mathrm{Re}(z'') (1 + \mathrm{Re}(z^4)) - \mathrm{Im}(z'') \mathrm{Im}(z^4) \right],
g_2 = -{3 \over 2} \left[ \mathrm{Re}(z'') + \mathrm{Re}(z'') \mathrm{Re}(z^4) - \mathrm{Im}(z'') \mathrm{Im}(z^4) \right].

The raw coordinates of the pre-rotated point are

g_1 = -{3 \over 2} [ \mathrm{Im}(z'') - \mathrm{Im}(z'') \mathrm{Re}(z^4) - \mathrm{Re}(z'') \mathrm{Im}(z^4) ],
g_2 = -{3 \over 2} \left[ \mathrm{Re}(z'') + \mathrm{Re}(z'') \mathrm{Re}(z^4) - \mathrm{Im}(z'') \mathrm{Im}(z^4) \right],

and the raw coordinates of the post-rotated point are

g_1' = -{3 \over 2} \left[ -{1 \over 2} \mathrm{Im}(z'') + {1 \over 2} \mathrm{Im}(z'') \mathrm{Re}(z^4) - {\sqrt{3} \over 2} \mathrm{Im}(z'') \mathrm{Im}(z^4) + {\sqrt{3} \over 2} \mathrm{Re}(z'') + {1 \over 2} \mathrm{Re}(z'') \mathrm{Im}(z^4) + {\sqrt{3} \over 2} \mathrm{Re}(z'') \mathrm{Re}(z^4) \right],
g_2' = -{3 \over 2} \left[ -{1 \over 2} \mathrm{Re}(z'') - {1 \over 2}\mathrm{Re}(z'') \mathrm{Re}(z^4) + {\sqrt{3}\over 2} \mathrm{Re}(z'') \mathrm{Im}(z^4) - {\sqrt{3}\over 2} \mathrm{Im}(z'') + {\sqrt{3}\over 2} \mathrm{Im}(z'') \mathrm{Re}(z^4) + {1 \over 2} \mathrm{Im}(z'') \mathrm{Im}(z^4) \right].

Comparing these four coordinates we can verify that

g_1' = -{1 \over 2} g_1 + {\sqrt{3} \over 2} g_2,
g_2' = -{\sqrt{3} \over 2} g_1 -{1 \over 2} g_2.

In matrix form, this can be expressed as

\begin{bmatrix} g_1' \\ g_2' \\ g_3' \end{bmatrix} = \begin{bmatrix} -{1 \over 2} & {\sqrt{3}\over 2} & 0 \\ -{\sqrt{3}\over 2} & -{1 \over 2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} \cos {-2 \pi \over 3} & -\sin {-2 \pi \over 3} & 0 \\ \sin {-2 \pi \over 3} & \cos {-2 \pi \over 3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix}.

Therefore rotating z by 120° to z′ on the complex plane is equivalent to rotating P(z) by -120° about the Z-axis to P(z′). This means that the Boy's surface has 3-fold symmetry, quod erat demonstrandum.