Bingel reaction
From Wikipedia, the free encyclopedia
The Bingel reaction in fullerene chemistry is a fullerene cyclopropanation reaction to a methanofullerene first discovered by C. Bingel in 1993 with the bromo derivative of diethyl malonate in the presence of a base such as sodium hydride or DBU . The preferred double bonds for this reaction on the fullerene surface are the shorter bonds at the junctions of two hexagons (6-6 bonds) and the driving force is relief of steric strain.
The reaction is of importance in the field of chemistry because it allows the introduction of useful extensions to the fullerene sphere. These extensions alter their properties for instance solubility and electrochemical behavior and therefore widen the range of potential technical applications.
[edit] Reaction mechanism
The reaction mechanism for this reaction is as follows: a base abstracts the acidic malonate proton generating a carbanion or enolate which reacts with the electron deficient fullerene double bond in a nucleophilic addition. This in turn generates a carbanion which displaces bromine in a nucleophilic aliphatic substitution in an intramolecular ring cyclopropane ring closure.
[edit] Scope
The Bingel reaction is a popular method in fullerene chemistry. The malonate (functionalized with the halide atom) is often obtained in situ in a mixture of base and tetrachloromethane or iodine . The reaction is also known to take place with the ester groups replaced by alkyne groups in dialkynylmethanofullerenes .
An alternative to the Bingel reaction is a fullerene diazomethane reaction. N-(Diphenylmethylene)glycinate Esters in a Bingel reaction take a different conjugate course and react to a fullerene dihydropyrrole.
[edit] References
- ↑ C. Bingel, Chem. Ber. 1993, 126, 1957.
- ↑ Structural Reassignment of the Mono- and Bis-Addition Products from the Addition Reactions of N-(Diphenylmethylene)glycinate Esters to [60]Fullerene under Bingel Conditions Graham E. Ball, Glenn A. Burley, Leila Chaker, Bill C. Hawkins, James R. Williams, Paul A. Keller, and Stephen G. Pyne J. Org. Chem.; 2005; 70(21) pp 8572 - 8574 DOI Graphical Abstract
- ↑ Synthesis of [60]Fullerene Adducts Bearing Carbazole Moieties by Bingel Reaction and Their Properties Yosuke Nakamura, Masato Suzuki, Yumi Imai, and Jun NishimuraOrg. Lett.; 2004; 6(16) pp 2797 - 2799; DOI Graphical Abstract
- ↑ Covalent fullerene chemistry FranGois Diederich Pure &Appl. Chem., Vol. 69, No. 3, pp. 395-400, 1997 Online Article