Basement rock
From Wikipedia, the free encyclopedia
Basement rock usually refers to the thick foundation of ancient, and oldest metamorphic and igneous rock that forms the crust of continents, often in the form of granite. Basement rock is contrasted to overlying sedimentary rocks which are laid down on top of the basement rocks after the continent was formed, such as sandstone and limestone. The sedimentary rocks which may be deposited on top of the basement usually form a relatively thin veneer, but can be more than 3 miles thick. The basement rock of the crust can be 20-30 miles thick, or more. The basement rock can be located under layers of sedimentary rock, or be visible at the surface. Basement rock is visible at the bottom of the Grand Canyon, consisting of 1.7-2 billion year old granite and schist, the Vishnu schist and Zoroaster granite. The vishnu schist is believed to be highly metamorphosed igneous rocks and shale, from basalt, mud and clay laid from volcanic eruptions, and the granite is the result of magma intrusions into the vishnu schist. An extensive cross section of sedimentary rocks laid down on top of it through the ages is also visible as well.
The thickest crust on the planet can be found in the Tibetan Plateau where the Indian subcontinent is colliding with Asia and China to the north, causing the formation of the Himalayas, the tallest mountains in the world. The crust there is said to be 70 miles thick.
The basement rocks of the continental crust tend to be much older than the oceanic crust. The oceanic crust can be from 0-250 million years in age, and is usually thinner (10 miles or so) and composed of basaltic rocks. Continental crust is older due to the fact that continental crust is light and thick enough so it is not subducted, while oceanic crust is periodically subducted and replaced at subduction and oceanic rifting areas.
The basement rocks are often highly metamorphic and complex, it may contain fragments of oceanic crust that became wedged between plates when the terrane was accreted to the edge of the continents, as well as complex structure many different types of instrusive and metamorphic rocks. It is said that majority of continental crust on the planet is around 1-3 billion years old and it is theorised there was a period of rapid expansion and accretion to the continents during the precambrian.
Much of the basement rocks may have originally been oceanic crust, but it was highly metamorphosed and converted into continental crust via a series of events. A typical pattern is as follows. It is possible for oceanic crust to be subducted down into the Earth's mantle, at subduction fronts, where oceanic crust is being pushed down into the mantle by an overridding plate of oceanic or continental crust.
When a plate of oceanic crust is subducted beneath an overriding plate of oceanic crust, as the underthrusting crust melts, it can cause upwelling of magma that can cause volcanism along the subduction front on the overridding plate. This produces an oceanic chain of volcanoes, like Japan. This volcanism causes metamorphosis of rocks, intrusions of magma that produce rocks such as granite, and thickens the crust by depositing additional layers of rock from volcanoes. This tends to make the crust lighter and thicker, as a result making immune to subduction.
Oceanic crust can be subducted, while continental crust cannot. Eventually, the subduction of the underthrusting oceanic crust can bring the volcano chain close to a continent, and collide with it. When overridding plate collides with the contininent, instead of being subducted, it is accreted to the edge of the continent and becomes a part of the continent. Thin strips or fragments of the underthrusting plate may also remain attached to the edge of the continent causing those fragments of oceanic crust to be wedged and tilted between the converging plates. In this manner, continents can grow over time as new terranes are accreted to their edges, and means continents can be composed of a complex quilt of terranes of varying ages.
As such, the basement rock can become younger going closer to the edge of the continent. There are exceptions of however, such as exotic terranes. Exotic terranes are pieces or fragments of other continents that have broken off their original parent continent and have become accreted to a different continent.
Also, many continents can consist of several continental cratons, continental cratons are blocks of crust built around an initial original core of continents, that gradually grew and expanded as additional newly created terranes were added to its edges. For instance, Pangea consisted of most of the earths continents being accreted into one giant supercontinent. Most continents indeed have several continental cratons, in other words they are made up of the accretion of many smaller continents, such as Asia, Africa, and Europe.