Barometer

From Wikipedia, the free encyclopedia

Schematic drawing of a simple mercury barometer with vertical mercury column and reservoir at base
Enlarge
Schematic drawing of a simple mercury barometer with vertical mercury column and reservoir at base
Table of Pneumaticks, 1728 Cyclopaedia
Enlarge
Table of Pneumaticks, 1728 Cyclopaedia

A barometer is an instrument used to measure atmospheric pressure.

Contents

[edit] Liquid barometers

[edit] Water-based barometers

This concept of "decreasing pressure means bad weather" is the basis for a primitive weather prediction device called a weather glass or thunder glass. It can also be called a "storm glass" or a "Goethe thermometer" (the writer Goethe popularized it in Germany).

For storm glasses and how to make them. As in Fitzroys storm glass. (Weather instrument to predict future weather by having cloudy water if it is cloudy and crystals if it will snow etc.) Go to http://chemistry.about.com/od/weirdscience/a/fitzroy.htm

It consists of a glass container with a wide spout. The container is filled with water up to about the middle of the spout; some air is left in the main body of the container. The design is such that when the air pressure decreases, the pressure of the air pocket inside the device will push some of the water up the spout. If the air pressure is low enough, some of the water may even drip out of the spout. These devices are essentially a water-based version of the mercury barometer. The "Thunder Glass" is extremely susceptible to the ambient temperature which will alter the height of the water column in the spout.

[edit] Mercury barometers

A standard mercury barometer has a glass column of about 30 inches (about 76 cm) in height, closed at one end, with an open mercury-filled reservoir at the base. Mercury in the tube adjusts until the weight of the mercury column balances the atmospheric force exerted on the reservoir. High atmospheric pressure places more downward force on the reservoir, forcing mercury higher in the column. Low pressure allows the mercury to drop to a lower level in the column by lowering the downward force placed on the reservoir.

Mercury column
Enlarge
Mercury column

The first barometer of this type was devised in 1643 by Evangelista Torricelli. Torricelli had set out to create an instrument to measure the weight of air, or air pressure, and to study the nature of vacuums. He used mercury, perhaps on a suggestion from Galileo Galilei, because it is significantly denser than water. To create a vacuum with water takes a column over 30 feet long, while with mercury it takes less than three feet.

Torricelli documented that the height of the mercury in a barometer changed slightly each day and concluded that this was due to the changing pressure in the atmosphere. He wrote: "We live submerged at the bottom of an ocean of elementary air, which is known by incontestable experiments to have weight".

The mercury barometer's design gives rise to the expression of atmospheric pressure in inches or millimeters (torr): the pressure is quoted as the level of the mercury's height in the vertical column. 1 atmosphere is equivalent to about 29.9 inches, or 760 millimeters, of mercury. The use of this unit is still popular in the United States, although it has been disused in favor of SI or metric units in other parts of the world. Barometers of this type can usually measure atmospheric pressures in the range between 28 and 31 inches of mercury.

[edit] Applications

A barometer is commonly used for weather prediction, as high air pressure in a region indicates fair weather while low pressure indicates that storms are more likely. Simultaneous barometric readings from across a network of weather stations allow maps of air pressure to be produced. Isobars drawn on such a map links sites with the same pressure and give, in effect, a contour maps of areas of high and low pressure. Localized high atmospheric pressure acts as a barrier to approaching weather systems, diverting their course. Low atmospheric pressure, on the other hand, represents the path of least resistance for a weather system, making it more likely that low pressure will be associated with increased storm activities.

[edit] Compensations

[edit] Temperature

The density of mercury will change with temperature, so a reading must be adjusted for the temperature of the instrument. For this purpose a mercury thermometer is usually mounted on the instrument. No such compensation is required for an aneroid barometer.

[edit] Altitude

As the air pressure will be decreased at altitudes above sea level (and increased below sea level) the actual reading of the instrument will be dependent upon its location. This pressure is then converted to an equivalent sea-level pressure for purposes of reporting and for adjusting aircraft altimeters (as aircraft may fly between regions of varying normalized atmospheric pressure owing to the presence of weather systems). Aneroid barometers have a mechanical adjustment for altitude that allows the equivalent sea level pressure to be read directly and without further adjustment if the instrument is not moved to a different altitude.

[edit] See also

[edit] External links and articles

Wikimedia Commons has media related to:
Encyclopedia entries
  • Barometer entry in the 1728 Cyclopaedia, with a detailed history and description of different barometers
Patents