Portal:Astronomy/Featured
From Wikipedia, the free encyclopedia
This page is where the articles to be featured on the Astronomy portal are listed. Feel free to make an entry for any article from Wikipedia:Featured articles#Physics and astronomy.
Newest articles at the top.
Contents |
[edit] This month's featured article
The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, based on the results of a series of observations by the Hubble Space Telescope. It covers an area 144 arcseconds across, equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and December 28, 1995.
The field is so small that only a few foreground stars in the Milky Way lie within it; thus, almost all of the 3,000 objects in the image are galaxies, some of which are among the youngest and most distant known. By revealing such large numbers of very young galaxies, the HDF has become a landmark image in the study of the early universe, and it has been the source of almost 400 scientific papers since it was created.
Three years after the HDF observations were taken, a region in the south celestial hemisphere was imaged in a similar way and named the Hubble Deep Field South. The similarities between the two regions strengthened the belief that the universe is uniform over large scales and that the Earth occupies a typical region in the universe (the cosmological principle). In 2004 a deeper image, known as the Hubble Ultra Deep Field, was constructed from a total of eleven days of observations. This image is the deepest (most sensitive) astronomical image ever made at visible wavelengths.
Recently featured: Crab Nebula – Mercury – Fermi Paradox
...Archive | Read more... |
[edit] Upcoming featured articles
[edit] January 2007
Barnard's Star is a very low-mass star in the constellation Ophiuchus which was discovered by the astronomer E. E. Barnard in 1916. Barnard measured its proper motion to 10.3 arcseconds per year, which remains the largest known proper motion of any star relative to the Sun. Lying at a distance of about 1.8 parsecs or 5.96 light-years, Barnard's Star is the second closest known star system to the Sun and the fourth closest known individual star after the three components of the Alpha Centauri system.
Barnard's Star is a relatively well-studied astronomical object, and has likely received more attention than any other M dwarf star given its proximity and favourable location for observation near the celestial equator. It has also been the subject of some controversy. For a decade from the early 1960s onward, an erroneous discovery of a planet or planets in orbit around Barnard's star was accepted by astronomers. It is also notable as the target for a study on the possibility of rapid, unmanned travel to nearby star systems. Research has focused on stellar characteristics, astrometry, and refining the limits of possible planets.
Recently featured: Hubble Deep Field – Crab Nebula – Mercury
...Archive | Read more... |
[edit] February 2007
A binary star is a stellar system consisting of two stars orbiting around their center of mass. For each star, the other is its companion star. Recent research suggests that a large percentage of stars are part of systems with at least two stars. Binary star systems are very important in astrophysics, because observing their mutual orbits allows their mass to be determined. The masses of many single stars can then be determined by extrapolations made from the observation of binaries.
Binary stars are not the same as optical double stars, which appear to be close together as seen from Earth, but may not be bound by gravity. Binary stars can either be distinguished optically (visual binaries) or by indirect techniques, such as spectroscopy. If binaries happen to orbit in a plane containing our line of sight, they will eclipse each other; these are called eclipsing binaries.
Recently featured: Barnard's Star – Hubble Deep Field – Crab Nebula
...Archive | Read more... |
[edit] March 2007
A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes and relatively high stellar densities toward their centers. Globular clusters, which are found in the halo of a galaxy, contain considerably more stars and are much older than the less dense galactic, or open clusters, which are found in the disk.
A globular cluster is sometimes known more simply as a globular; the word is derived from the Latin globulus (a small sphere).
Globular clusters are fairly common; there are about 150 currently known globular clusters in the Milky Way, with perhaps 10–20 more undiscovered. Large galaxies can have more: Andromeda, for instance, may have as many as 500. Some giant elliptical galaxies, such as M87, may have as many as 10,000 globular clusters. These globular clusters orbit the galaxy out to large radii, 40 kiloparsecs (approximately 131 thousand light years) or more.
Recently featured: Binary star – Barnard's Star – Hubble Deep Field
...Archive | Read more... |