Image:Animated.gif
From Wikipedia, the free encyclopedia
Animated.gif (73KB, MIME type: image/gif
)
-
An equivalent image is now available on Wikimedia Commons as Image:Periodic identity function.gif.
[edit] Summary
This file was created by me using the following R source code:
f=function(x) {return((x+pi)%%(2*pi)-pi)} x=c(-3000:3000)*pi/1000 y=f(x) b=function(n){return((-1)**(n+1)*2/n)} y_fourier=function(n) {return(sin(x%*%t((1:n)))%*%b(1:n))} for(i in 1:5) { jpeg(paste("animated_",i,".jpg",sep="")) plot(x,y,type="p",col="green", pch=".",main="Periodic version of the identity function", axes=FALSE,xlab="",ylab="") lines(rep(pi,201),(-100:100)*pi/100,lty="dotted") lines(rep(-pi,201),(-100:100)*pi/100,lty="dotted") axis(side=2, pos=0,at=c(-1,1)*pi,font.axis=5,labels=c("-p","p")) axis(side=1, pos=0,at=c(-3:3)*pi,font.axis=5,labels=c("-3p","-2p","-p","0","p","2p","3p")) lines(x,y_fourier(i)) dev.off() }
Then using the following shell command:
convert -delay 50 -loop 50 ani*.jpg animated.gif
-- Deimos 28 18:39, 12 March 2006 (UTC)
[edit] Licensing
I, the creator of this work, hereby grant the permission to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Subject to disclaimers.
File history
Legend: (cur) = this is the current file, (del) = delete
this old version, (rev) = revert to this old version.
Click on date to download the file or see the image uploaded on that date.
- (del) (cur) 14:29, 12 March 2006 . . Deimos 28 (Talk | contribs) . . 480×480 (74,065 bytes) (Created by me using R with the following source code: {| |- f=function(x) {return((x+pi)%%(2*pi)-pi)} |- |x=c(-3000:3000)*pi/1000 |- |y=f(x) |- |b=function(n){return((-1)**(n+1)*2/n)} y_fourier=function(n) {return(sin(x%*%t((1:n)))%*%b(1:n))} |for(i in 1)
- (del) (rev) 13:45, 12 March 2006 . . Deimos 28 (Talk | contribs) . . 480×480 (123,118 bytes) (This file was created by me using the following [http://wwwr-project.org R] source code: f=function(x) {return((x+pi)%%(2*pi)-pi)} x=c(-3000:3000)*pi/1000 y=f(x) b=function(n){return((-1)**(n+1)*2/n)} y_fourier=function(n) {return(sin(x%*%t((1:n)))%*%b(1)
- Edit this file using an external application
See the setup instructions for more information.