Air-augmented rocket

From Wikipedia, the free encyclopedia

Air-augmented rockets (also known as rocket-ejector, ramrocket, or ejector ramjets) use the supersonic exhaust of some kind of rocket engine to further compress air collected by ram effect during flight to use as additional working mass, leading to greater effective thrust for any given amount of fuel than either the rocket or a ramjet alone.

They represent a hybrid class of rocket/ramjet engines, similar to a ramjet, but are also able in some cases to operate outside the atmosphere, with fuel efficiency as good or better than both a comparable ramjet or rocket at every point.

Contents

[edit] Operation

A normal chemical rocket engine combines an oxidizer and a fuel, sometimes pre-mixed, as in a solid rocket, which are then burned. The heat generated greatly increases the temperature of the mixture, which is then exhausted through a nozzle where it expands and cools. The exhaust is directed rearward through the nozzle, thereby producing a thrust forward. In this conventional design, the fuel/oxidizer mixture is both the working mass and energy source that accelerates it.

One method of increasing the overall performance of the system is to collect either the fuel or the oxidizer during flight. Fuel is hard to come by in the atmosphere, but oxidizer in the form of gaseous oxygen makes up 20% of the air and there are a number of designs that take advantage of this fact. These sorts of systems have been explored in the LACE concept.

Another idea is to collect the working mass instead. With an air-augmented rocket, an otherwise conventional rocket engine is mounted in the center of a long tube, open at the front. As the rocket moves through the atmosphere the air enters the front of the tube, where it is compressed via the ram effect. As it travels down the tube it is further compressed and mixed with the fuel-rich exhaust from the rocket engine, which heats the air much as a combustor would in a ramjet. In this way a fairly small rocket can be used to accelerate a much larger working mass than normally, leading to significantly higher thrust within the atmosphere.

[edit] Effectiveness

The effectiveness of this simple method can be dramatic. Typical solid rockets have a specific impulse of about 260 seconds (2.5 kN·s/kg), but using the same fuel in an air-augmented design can improve this to over 500 seconds (4.9 kN·s/kg), a figure even the best hydrogen/oxygen engines can't match. This design can even be slightly more efficient than a ramjet as the exhaust from the rocket engine compresses the air more than a ramjet normally would; this raises the combustion efficiency as a longer, more efficient nozzle can be employed. Another advantage is that the rocket works even at zero forward speed, whereas a ramjet requires forward motion to feed air into the engine.

Therefore ramrockets make good ramjets.

[edit] Downsides

It might be envisaged that such an increase in performance would be widely deployed, but various issues frequently preclude this. The intakes of high-speed engines are difficult to design, and they can't simply be located anywhere on the airframe whilst getting reasonable performance–in fact the entire airframe needs to be built around the intake design. Another problem is that since the air eventually runs out, so the amount of additional thrust of the engine is limited by how fast it climbs. Finally, the air ducting weighs about 5 to 10x more than an equivalent rocket that gives the same thrust. This slows the vehicle quite a bit towards the end of the burn. Thus in practice, use of an air-augmented design will normally reduce the overall performance of a rocket due to the extra weight.

Therefore ramrockets make relatively poor rockets.

[edit] History

So far as has been publicly admitted, there has been only one serious attempt to make a production air-augmented launch vehicle or ICBM, the Soviet Gnom design. This was an ICBM whose performance was so improved that it weighed half that of conventional designs. This led to it being light enough, about 60 tonnes, that it could be mounted on the back of a large tank chassis and made fully transportable. Design and test work continued on the design throughout the early 1960s, but ended in 1965 when the chief designer died.

However, many modern solid fuelled 'ramjet' powered missiles may in fact be air augmented rockets, and the distinction between a ramjet and an air augmented missile is rather blurred. Many solid fuelled ramjet missiles seem to be solid fuelled ramrockets in all but name.

[edit] Advanced Concepts

Another, higher technology version, would be the Nuclear powered Magnetic RamRocket, which uses a magnetic field to accelerate air encountered via intake systems to potentially relativistic speeds.

Such a system is no longer purely theoretical, but there are several major problems that cannot be resolved without either hybridizing the system, or, adding a secondary propulsion system. For instance, Ramrocket pressurization doesn't get close enough to the necessary threshold to produce thrust until about 600 miles per hour. (Or more.)

[edit] See also

[edit] External links

In other languages