Talk:ADM formalism

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Stub This article has been rated as Stub-Class on the assessment scale.
??? This article has not yet received an importance rating within physics.

This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

This article has been automatically assessed as Stub-Class by WikiProject Physics because it uses a stub template.
  • If you agree with the assessment, please remove {{Physics}}'s auto=yes parameter from this talk page.
  • If you disagree with the assessment, please change it by editing the class parameter of the {{Physics}} template, removing {{Physics}}'s auto=yes parameter from this talk page, and removing the stub template from the article.


In Theoretical Physics, Hamiltonian formulation has succeeded to quantize field theory with canonical quantization method e.g., quantum electrodynamics and quantum chromodynamics. By taking the analogy of the above theories, Hamiltonian formulation can also be developed for Einstein gravity theory, which have been done by Arnowitt, Deser, and Misner (ADM) in 1962. ADM formalism is consistent with initial value formulation for general relativity. When general relativity can be cast into Hamiltonian form, one can attempt to quantize general relativity. However, a serious difficulty arises because of the presence of the constraint. Efforts to solve this constraint or to impose this constraint as an additional condition on state vector still have not been successful.


Benz Edy Kusuma, ITB

Reference: 1. Arnowitt, R., Deser, S., and Misner, C. W., The Dynamics of General Relativity, in Gravitation: an Introduction to Current Research, ed. Louis Witten, Wiley, New York, 1962, pp. 227-265. 2. Wald, R. M., General Relativity, The University of Chicago Press, Chicago,1984.

[edit] technical

I would rather not try and clean this up, when there are probably people who are probably more familiar with the formalism than I and can do it easier than I could. Salsb 16:00, 21 February 2006 (UTC)