ADM formalism

From Wikipedia, the free encyclopedia

The ADM Formalism developed by Arnowitt, Deser and Misner is a Hamiltonian formulation of general relativity.

The formalism supposes that spacetime is foliated into a family of spacelike surfaces Σt, labeled by their time coordinate t, and with coordinates on each slice given by xi. The dynamic variables of this theory are taken to be the metric of three dimensional spatial slices γij(t,xk) and their conjugage momenta πij(t,xk). Using these variables it is possible to define a Hamiltonian, and thereby write the equations of motion for general relativity in the form of Hamilton's equations.

In addition to the two variables γij and πij, there are two Lagrange multipliers called the lapse N and shift Ni. These describe how each of the "leaves" Σt of the foliation of spacetime are welded together. These variables are nondynamical, and their "equations of motion" are constraint equations that enforce invariance under time reparameterizations and coordinate changes on the spatial slices, respectively.

Using the ADM formulation, it is possible to attempt to construct a quantum theory of gravity, in the same way that one constructs the Schrodinger equation corresponding to a given Hamiltonian in quantum mechanics. That is, replace the canonical momenta πij(t,xk) by functional differential operators

\pi^{ij}(t,x^k) \to -i \frac{\delta}{\delta \gamma_{ij}(t,x^k)}

This leads to the Wheeler-deWitt equation.

[edit] See also


This relativity-related article is a stub. You can help Wikipedia by expanding it.