Absolutely simple group

From Wikipedia, the free encyclopedia

In mathematics, in the field of group theory, a group is said to be absolutely simple if it has no proper nontrivial serial subgroups. That is, G is an absolutely simple group if the only serial subgroups of G are {e} (the trivial subgroup), and G itself (the whole group).

In the finite case, a group is absolutely simple if and only if it is simple. However, in the infinite case, absolutely simple is a stronger property than simple. The property of being strictly simple is somewhere in between.

[edit] See also

[edit] External links


This algebra-related article is a stub. You can help Wikipedia by expanding it.