Talk:24-cell
From Wikipedia, the free encyclopedia
I am questioning this statement: "An analogous construction in 3-space gives the rhombic dodecahedron, which, however, is not regular." To me, the construction yields a stellated cube. And where would the irregularity of the rhombus come from anyway?
- The analagous construction in 3-space would be 8 vertices of the form (±½,±½,±½), and 6 vertices obtained from (0,0,±1) by permuting coordinates, which gives a rhombic dodecahedron. --Zundark 13 Mar 2005
Can someone tell me how many 24-cells (how many polychlora), how many ridges (how many triangular faces), and how many edges meet at any given vertex in a tessellation of regular 24-cells?
I question the portion of the following statement in italics: "The tessellation [of Euclidean 4-space] by regular 24-cells can be described in terms of the F4 lattice: the facets are centered at those points with even norm squared (the D4 sublattice), and the vertices form the set of all points with odd norm squared. Each facet has 24 neighbors and there are 8 facets meeting at any given vertex." If one of the 24-cells is centered at the origin, then the point (0, 0, 0, 0) is not at the center of a facet (border cell) of the 24-cell even though it's Euclidean norm squared (02 + 02 + 02 + 02) is 0, which is even. Other points in the F4 lattace with an even Euclidean norm squared such as permutations of (±1, ±1, 0, 0) seem logical as centers of other 24-cells in the tessellation, so I think it may be the 24-cells themselves, and not their octahedral facets, that are centered at those points with an even norm squared. : Kevin Lamoreau 17:34, 14 August 2005 (UTC)
- In the quoted statement facet refers to "facets of the tesselation", not "facets of the 24-cells". The facets of the 24-cells are usually called cells. I agree the terminology is confusing. Perhaps 4-facet would be more precise. -- Fropuff 04:02, 7 November 2005 (UTC)
[edit] Orientable?
A recent edit added 'orientable' to 'Properties'. I'm just wondering if this is at all necessary, since all regular polytopes are orientable by definition. It seems redundant.—Tetracube 16:28, 9 February 2006 (UTC)
Looks like change was: 02:39, January 23, 2006 Shawn81 (Properties: orientable)
Orientable is trivially true for convex polytopes with convex cells, so it does seem redundant. Tom Ruen 22:36, 9 February 2006 (UTC)